Lecture 5 Smooth convex minimization problems
ثبت نشده
چکیده
To the moment we have more or less complete impression of what is the complexity of solving general nonsmooth convex optimization problems and what are the corresponding optimal methods. In this lecture we treat a new topic: optimal methods for smooth convex minimization. We shall start with the simplest case of unconstrained problems with smooth convex objective. Thus, we shall be interested in methods for solving the problem
منابع مشابه
Unified global optimality conditions for smooth minimization problems with mixed variables
In this paper we establish necessary as well as sufficient conditions for a given feasible point to be a global minimizer of smooth minimization problems with mixed variables. These problems, for instance, cover box constrained smooth minimization problems and bivalent optimization problems. In particular, our results provide necessary global optimality conditions for difference convex minimiza...
متن کاملLecture 2: Subgradient Methods
In this lecture, we discuss first order methods for the minimization of convex functions. We focus almost exclusively on subgradient-based methods, which are essentially universally applicable for convex optimization problems, because they rely very little on the structure of the problem being solved. This leads to effective but slow algorithms in classical optimization problems, however, in la...
متن کاملConvergence Analysis of the Approximate Proximal Splitting Method for Non-Smooth Convex Optimization
Consider a class of convex minimization problems for which the objective function is the sum of a smooth convex function and a non-smooth convex regularity term. This class of problems includes several popular applications such as compressive sensing and sparse group LASSO. In this thesis, we introduce a general class of approximate proximal splitting (APS) methods for solving such minimization...
متن کاملLecture 20 : Splitting Algorithms
In this lecture, we discuss splitting algorithms for convex minimization problems with objective given by the sum of two nonsmooth functions. We start with the fixed point property of such problems and derive a general scheme of splitting algorithm based on fixed point iteration. This covers Douglas-Rachford splitting and Peaceman-Rachford splitting algorithms. We also discuss the convergence r...
متن کاملComposite proximal bundle method
We consider minimization of nonsmooth functions which can be represented as the composition of a positively homogeneous convex function and a smooth mapping. This is a sufficiently rich class that includes max-functions, largest eigenvalue functions, and norm-1 regularized functions. The bundle method uses an oracle that is able to compute separately the function and subgradient information for...
متن کامل